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Abstract
The project reported in this paper will aim to investigate the effect of trading volume data on
the performance of deep learning models used for cryptocurrency market price prediction.

Among many other crypto coins, Ethereum (ETH) is the coin of choice in this paper, as it will
allow a more flexible interpretation of results and comparison to other studies in the field.

Forecasting is made based on the closing price of ETH, and the aim is to predict the closing
price for the following week.

The main focus is made on deep-learning-based hybrid models made of Gated Recurrent
Units (GRU) and Long Short Term Memory (LSTM), in addition to a customised
Transformer model. The performance of the above models was evaluated before and after
applying the Volume of day trading as an additional parameter.

The study results show that Hybrid Models do not experience significant improvements after
adding Volume. However, Transformer model performance was notably harmed by Volume.
Overall, it is not suggested to use the Volume of day trading as an additional parameter when
performing cryptocurrency price prediction using deep neural networks.
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1. Introduction
Cryptocurrency is a relatively new digital currency based on blockchain technology and
cryptography. It has a decentralised and secure structure. Transactions made in
cryptocurrency are nearly anonymous and provide freedom, as it allows users to make
transactions without the need for a middleman, similar to banks for fiat currencies. All the
transactions are stored in a publicly available blockchain database, which combines
transparency and security [1].

The cryptocurrency market as a whole accomplished significant growth in the past decade.
The market went from a single Bitcoin to thousands of currencies and tokens [2]. According
to CoinMarketCap, there are over 21,000 cryptocurrencies, with a total market value of over
$942 billion as of October 2022 [3]. The rapid growth made it very attractive for investors
from all over the world.

Cryptocurrency popularity and volatility show the importance of prediction of the price. It is
beneficial not only for individual investors as guidance for decision making, but also for
financial researchers and studies that will be conducted in the future in the field of market
behaviour. Price prediction for cryptocurrencies can be broken down as a popular time-series
problem, similar to price prediction for stocks or anything with historical data available [4].

Cryptocurrencies do demonstrate non-linear patterns in price behaviour. When traditional
machine learning tools are applied to cryptocurrencies, they perform imperfectly. Hence,
there is a need for a more capable prediction tool, such as Deep Learning algorithms. It is a
well-known solution for problems that involve forecasting complicated time-series problems
[5].

This study will investigate the impact of the volume of trading on the predictive models, as
only a few academic papers have considered this parameter. Furthermore, to our best
knowledge, nobody measured the effect of trading volume on the hybrid deep learning
predictive models, as well as nobody applied a transformer deep learning model for time
series forecasting in the form of cryptocurrency price prediction. This will be carried out by
creation and testing of hybrid deep learning models and application of a new parameter to
evaluate the change in predictive ability. In addition to creation and testing of a transformer
model, for the same purposes. The evaluation metrics such as Mean Squared Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE) will be used to compare the predictive power of the models before
and after the application of volume, and it will show the efficiency of the proposed idea. The
information gained from the evaluation will allow for comparisons with previous studies of
the cryptocurrency market price prediction.
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1.1 Project Aims

The project aims to investigate the impact of the daily trading volume as an additional input
parameter on hybrid deep neural networks used for cryptocurrency price prediction. As well
as implement the first ever transformer suitable for time series forecasting, apply it to
cryptocurrency price prediction and test the impact of volume. Discuss the change in the
predictive power of the models and make a conclusion. In order to collect the data suitable
for the investigation, the following objectives will be utilised:

● Create LSTM-GRU and GRU-LSTM hybrid models, train using ETH as the coin of
choice and measure performance – to get the baseline data for the study.

● Create a Transformer model suitable for time series prediction, train using ETH as
the coin of choice, and measure the performance – to get the baseline data for the
study.

● Discover the optimal input window size for the above models.
● Discover the optimal optimisation formulas for the above models.
● Apply Volume as an additional parameter for presented models, experiment with

different normalisation formulas, and measure models' performance after the input
parameter changes.

● Make a conclusion based on collected data and present a verdict on the effect of
volume as an additional parameter on hybrid deep learning models and Transformer.

1.2 Report Overview

Background - This section will describe research projects previously conducted in
cryptocurrency price prediction, as well as methods and principles that were used before.
Focus is made on hybrid deep learning models, as it is one of the targets of the project.
Along with an overview of work done in the field of transformer models, the logic behind
them and studies utilising these principles.

Data Preprocessing - The chapter outlines the choice of coin for the project, the data sources
used, and the operation performed with raw data before any application in the models.

Design - In this section, the focus is made on the specific design ideas and challenges that
were faced in the progress of the project’s creation.

Implementation - This chapter focuses on specific details of the implementation part of the
project. The section describes hybrid deep learning models and transformer model that were
designed and created. The section further discusses the experiments conducted to determine
the best input window for the models and the normalisation techniques applied to input data.

Results analysis - Pre-ultimate section discusses the findings and results of the study. This
chapter presents the final prediction results of the models in graphs and evaluation metrics.
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Conclusion - It is the final chapter of this report, with a discussion about the completed
project, possible further work and lessons learned.
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2. Background
This section provides an overview of work previously done in the cryptocurrency price
prediction field and a description of research papers that were used as the theoretical basis for
the transformer model implemented within this project.

2.1. Hybrid Deep Learning Models

Previous projects relating to this study include deep learning-based cryptocurrency price
prediction schemes with inter dependent relations [6]. The paper reports on how the use of
parent coin data affects the hybrid predictive models. As the parent coin, Bitcoin (BTC) is
used because it is the oldest and most valuable coin on the market. Coins for prediction were
Litecoin and Zcash, both are relatively old and historically replicate the movement of BTC
market price. Public data for training and testing the models was taken from investing.com
[7], a trusted information source in the crypto community. For the prediction model, two
types of neural networks were used: Long short-term memory (LSTM) and Gated recurrent
units (GRU); flattening was also used on the parent coin's data. As mentioned previously,
models were combined into a hybrid model, the output of which was combined with a
flattening result, producing a realistic and accurate prediction for windows of one, three,
seven and thirty days.

However, this paper focused on the average price parameter. It used it as the primary
information for hybrid deep learning neural networks, so conclusively, it only shows the
predictive ability with this limitation. Therefore, applying more types of publicly available
data: open price, high of the day, low of the day, and the daily volume of trading; could show
how the predictive ability of the model changes depending on the input data. Such changes in
predictive abilities in deep neural networks will be studied in this project. Moreover, only
mean squared error (MSE) was used to evaluate the proposed model, making it more
complicated to compare to other papers in the field. Therefore, applying other evaluation
metrics could lead to better comparable results.

Furthermore, the Ether price prediction techniques used by Politis et al. [8] also relate to our
project. The project involved price prediction for Ethereum (ETH), or Ether, as it is referred
to in the study. The idea of a parent coin was also reflected in this study, and the price of
Bitcoin was used to reflect market dynamics. Also, the price of ETH and volume in USD
were used, as well as some technical indicators: simple moving average (SMA) of two weeks,
exponential moving average (EMA) for the same two weeks and Moving Average
Convergence Divergence (MACD). Additionally, popularity indexes from Google trends for
terms (ETH, Coinbase and Exodus) were used. However, two attributes of the ETH
blockchain were used as main characteristics: daily block size and mining difficulty. For
prediction in this study were used LSTM, GRU and Temporal Convolutional Network (TCN)
models; also, the different combinations of them in the form of hybrid networks were tested:
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LSTM-GRU, LSTM-TCN, GRU-TCN. A comparison of the results for all six models made
this study comprehensive. Furthermore, root-mean-square error (RMSE) and mean absolute
percentage error (MAPE) were used to evaluate the results, which made the work easily
comparable with other works in the field. Generally, hybrid models outperformed individual
ones, as concluded by the study.

The above study showed how accurately the price of ETH can be predicted using different
hybrid deep-learning neural networks. However, data used as main characteristics is no
longer relevant to the Ethereum blockchain. A few months ago, ETH switched from the Proof
of Work (POW) protocol to Proof of Stake (POS). In the case of POS, the block in the
blockchain does not have difficulty anymore. The number of blocks is fixed per unit of time.
Hence, one of the main parameters is not usable anymore; it could be interesting to test the
same network structures with a different and more relevant set of main characteristics. This
project will also involve the usage of hybrid neural networks but comparing it with other
hybrids, not with individual models. Moreover, it will focus on not out of date characteristics
of blockchains.

Another paper investigated the price prediction capabilities of deep neural networks in the
case of cryptocurrencies [9]. As an object for the experiment, Bitcoin was chosen as a market
maker in the world of cryptocurrencies. Prediction of the BTC price will give the overall
view of the cryptocurrency market. LSTM and GRU models were chosen and tested, and the
goal was to determine the best accuracy and compilation time. GRU outperformed LSTM in
compilation time and demonstrated a better ability to predict time series-related problems.
Daily price values were used as a base of the dataset, including opening price, high price, low
price, closing prices, and market capitalization for the day. The data was collected in the
period from 2014 to 2018.

However, many daily price values were used in a data set. It was still not including the
volume of trading. Also, data from only four years was utilised, which does not include the
last four years of significant changes in the market. Furthermore, the project focused on
LSTM and GRU models in non hybrid format, which makes the purpose of the study
doubtful as it is proven that singular models' performance in such tasks is lower than hybrid
ones. Therefore, it would be practical to repeat the project with an updated data set and more
parameters in consideration, as well as hybrid models under evaluation.

As a result, our project will specifically investigate hybrid neural networks for
cryptocurrency price prediction. Hence, they are the most efficient ones, and only a few
experimentations with input parameters have been made, which makes it a challenging but
exciting task to reinforce existing network models with volume data and discuss the results.

2.2. Transformer Models
Transformer models were proposed in 2017 by Vaswani et al. in the paper "Attention Is All
You Need" [10]. The model proposed in the paper was an innovation in the world of
dominant sequence transduction models; such models usually use complex recurrent or
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convolutional neural networks with an encoder and decoder. The complexity of the above
models makes them expensive to train and test as they require a lot of computation power. On
the other hand, proposed Transformer networks use only attention mechanisms and avoid
computationally expensive recurrence and convolutions. Instead, they use auto-regression,
which allows newly generated symbols to rely on previously generated symbols.

Transformers from the paper above were used for two machine translation tasks. One model
improved the best results for the WMT 2014 English- to-German translation task. While the
other outperformed all the competitors in WMT 2014 English-to-French translation task.
Although training time for transformers was a lot less than for any other state-of-the-art
models, both attention models achieved impressive results. Additionally, new models were
applied to English constituency parsing tasks and demonstrated promising results.

Transformers or attention-based neural networks demonstrated promising results in
text-related tasks, such as translation and constituency parsing. However, they were not
applied to anything but text-related work, and taking into account their outstanding
performance; it is the perfect next step to try and apply innovative Transformers to other jobs,
for example, time-series prediction and see if they are capable of competing with
state-of-the-art solutions like hybrid deep neural networks.

After the Transformer models were proposed, they gained much attention from the scientific
community. Furthermore, one of the most popular applications of Transformers models for
natural language processing (NLP) was found by Brown et al. [11] and proposed in the form
of a 175 billion parameter autoregressive language model, also known as GPT-3. Moreover,
GPT-3 is a prominent ancestor of the very famous chatGPT, as ChatGPT is essentially a
supervised fine-tuning version of GPT-3.

GPT-3 Transformer demonstrated excellent performance in many NLP tasks. The model was
tested in zero-shot, one-shot and few-shot, where the number of shots refers to a number of
example task solutions given to the network before evaluation. Generally, the goal was to test
Transformers' ability for rapid adaptation to different tasks. Broadly, GPT-3 achieved good
results in zero-shot and one-shot settings and even outperformed state-of-the-art models in
the few-shot setting. Of course, there were tasks with low performance, including language
inference tasks and comprehension datasets reading.

Overall, GPT-3 demonstrated impressive results in NLP tasks even without fine-tuning and
limitations in the number of examples. However, all the tasks were related to NLP or other
language processing datasets and tasks. So still, no study applies such innovative and robust
network architecture to any other area of DNN problems. In our study, we are applying the
Transformer model for time-series prediction, or cryptocurrency price prediction, to be
precise.
‌
Now it is time to discover what work was done in the field of cryptocurrency price prediction
in relation to Transformer models. There are only a few studies that contributed to that area;
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one of them is [12]. In the paper, transformer models of two types are used to analyse the
social media comments, in particular Tweets made on the topic of Bitcoin. The study focuses
on the prediction of Bitcoin price using Close value and tweets related and split into three
categories: positive, negative and natural. FinBERT and RoBERTa models were trained and
used for the tweeter's feed split. Later the LSTM, GRU and vanilla RNN were used to
convert the labels made by transformers and closing price into the actual prediction.
However, the study concludes that the model at the end of the day was not accurate enough in
the given state. The paper concluded that it is not possible to create an accurate enough
prediction model for real world use. However, by working on the accuracy of the training
data set and by increasing the size of the training data set combined with hyperparameter
tuning, the predictive power of the model could become sufficient.

The paper above uses transformer models but in a very different way than we are going to use
them. In our study, we are trying to substitute DNN with a transformer and place it in a new
and unusual environment to evaluate its performance on an entirely new task. Moreover, in
[12], transformers were used only in a new type of text analysis task, and it is what
transformers were created to do initially. There is nothing new in such a way of using them.
That highlights the difference between the ideas used in this paper and the above one.

Another study in the field of cryptocurrency price prediction is [13]. The Transformer was
used in combination with LSTM; precisely, the results of the two models were combined
using a hybrid combiner, so the models were used in parallel. Tanwar and Kumar [13] used a
very different type of transformer model. However, it utilised the same shared principles with
our implementation: self-attention and positional encoding. Overall, it was used in hybrid
with LSTM to predict prices of Bitcoin, Binance coin and Ethereum. The experiment showed
that the Transformer and LSTM model took the longest time to compile but was the most
accurate when compared to three different DNNs: LightGBA, Choudhary Cnn and
LSTM-GRNN. The conclusion was made that LSTM, along with Transformer, give the best
performance for time series prediction out of the three tested models.

For the above reasons, the authors of the paper Prediction of Cryptocurrency prices using
Transformers and Long Short term Neural Networks [13] did a great job using the
transformer model for cryptocurrency price prediction. However, there are fundamental
differences in to work that is performed in our study. The transformer model performance is
not evaluated without any hybrid components, and the model uses bagging, which is very
computationally expensive and makes the model very time and energy consuming to compile
and run. The previously mentioned reasons indicate the fundamental difference between our
subject of study and all the papers published before.

Overall, transformers have proven to be very competitive in language processing tasks and
were utilised in combination with other RNNs for cryptocurrency price prediction. However,
there were no cases when price forecasting was performed entirely by the appropriately
constructed transformer model alone. That is the area where our work will try to fill in the
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gap and make the conclusion regarding the question of can transformers be used for
time-series forecasting in the setting of the super volatile cryptocurrency market.
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3. Data Preprocessing
This chapter discusses the choices made regarding the cryptocurrency data used in the project
for models training and evaluation. Additionally, data sources are explained, and operations
on raw data are described.

3.1 Dataset Description
Ethereum was chosen because of several factors. Firstly, while Bitcoin (BTC) is a market
maker of cryptocurrencies, it reflects the overall dynamics of all cryptocurrencies and is
frequently used as additional parameters for DNN or applied as a parent coin [6, 8]. To make
it easier for peers to review this paper, interpret the results and compare it to papers that use
BTC, the other major coin in the crypto market was considered - ETH. Secondly, Ethereum is
a very old cryptocurrency that had a massive impact on the market as a whole. It would be
very beneficial for investors to know the future price fluctuation of ETH.

Data for the project was taken from a well known source of financial data: Yahoo finance
[14]. It is a frequently used source of information for financial studies, stock prediction
studies and time-series research papers [15, 16]. It is a trusted source of information not only
for stock market data but also for the cryptocurrency market. Because of these reasons,
Yahoo finance is a chosen source for ETH trading figures.

When downloaded from Yahoo finance, the ETH data table has the following fields: Date,
Open, High, Low, Close, Adj Close, and Volume. The values follow the daily format. Most of
the studies in the field use daily data, as reported in the cryptocurrency price prediction
survey [5]. Only Date, Close, and Volume will be used in our implementation. Our models
will be predicting the ETH closing price for each day of the following week.

A sample image of the used dataset is shown in Figure 3.1. It demonstrates the fields and
values of the utilised data. Our dataset consists of seven columns and 1828 rows. We are
showing the first few rows of data in the image below.

Figure 3.1: ETH price dataset

In the table above the columns represent the following:
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● Date - time of the record in format YYYY-MM-DD
● Open - price at the start of the day
● High - highest price of the day
● Low - lowest price of the day
● Close - price at the end of the day
● Adj Close - is a metric used mainly in the stock market and it represents Close price

adjusted according to all dividend distributions and splits that accrued during the day.
However, it is not applicable to cryptocurrencies, so the Adj Close in our case is
equivalent to Close.

● Volume - represents the total volume of trading in USD that happened in a day

All the format changes that took place before model training will be described in the Dataset
Preprocessing section of the report.

3.2 Dataset Preprocessing
Data preprocessing included two steps. Firstly, conversion of the Date field in the
downloaded table to ‘datetime64’ format instead of ‘object’ type. It is a crucial step because
the Date field in a different format could break functions that are further used to draw graphs
with predictions of models. The second step was to convert Volume from ‘int64’ to the type
of ‘float64’, similar to other fields in the table. It is important to have Close price and Volume
of day trading in the same format, as they later will be used together, and type differences can
affect normalisation procedures. The modified file is saved back to the directory of origin.

After preprocessing steps, the data is presented as a ‘.csv’ file with Date, Open, High, Low,
Close, Adj Close, and Volume in appropriate format types and ready to be used in the models'
implementation.
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4. Design
This section of the report discusses major design challenges that were faced during the
development of the models and project progression. Understanding of these design decisions
will be important to the overall flow of the implementation part of this project. This section
will be focusing on general aspects and problems that will be further discussed and supported
with evidence from literature or experiments in the implementation section.

The fundamental parts of the project are Hybrid models and Transformer model. These are
completely different DNNs and both cases required separate design approaches and decisions
to be made. They utilise different principals and logical components. Hence, this section is
split into two subtopics one discussing the design of Hybrid models and the other about
Transformer.

Another important stage of initial design is shoes made regarding the implementation
environment and programming languages to be used within this project. All the bits of the
models were created using Google Colab. It allowed free usage of sufficient computation
power, it had all the Python modules needed preinstalled and saved a lot of time usually spent
on solving problems with the operating system and modules incomparability. In addition to it,
Jupyter Notebook formation of code that is handy for data science related projects and allows
code to be clear and structure for any reader due to extensive commenting and segmentation.
Regarding language and libraries used more information is provided in the beginning of
implementation part of this report. Generally, the Tensor Flow and PyTorch were used for
models implementation. Tenser Flow was used for Hybrid models and PyTorch for
Transformer.

4.1 Hybrid Models
There are many models that can be used for time-series tasks. Hence, firstly, it is important to
say why the hybrid deep learning models (HDL) were used in the project rather than simpler
non-hybrid versions or machine learning algorithms. It was proven by Pintelas in 2020 [4]
that deep learning models (DL) outperform machine learning (ML) in time-series
problem-solving when applied to cryptocurrencies. At the same time, HDL models beat DL
models in cryptocurrency price prediction, as was concluded by Politis [8]. We want our
research to utilise the most efficient models as they will be used a lot in the future, which is
why we implemented and conducted experiments on HDL.

The other question when constructing HDL models is what artificial neural network
components to use. In order to answer, we have to look back on the previous research papers
in the field. Recurrent neural networks, or RNNs, feature the recurrent connection between
the input and output layers and can follow contextual information along with data input. That
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makes them great for long sequences of data. Two common RNN networks are LSTM and
GRU [9]. The ability of LSTM and GRU to effectively manage past information makes these
architectures state-of-the-art solutions for problems involving sequential data [8].
Additionally, separately or combined above RNNs were used in many studies across the field
of cryptocurrency price prediction [4, 6, 8, 9]. Based on the previously stated reasons, it was
apparent to choose LSTM-GRU and GRU-LSTM hybrids for this project to make it as
relevant as possible to the current and future studies.

In the proposal of that project, it was suggested that we would be able to find an academic
paper with available source code to utilise for our HDL models implementation. However,
after spending time searching and sending emails to authors of papers on cryptocurrency
price prediction, it became clear that there is no one who would want to share the source code
or anybody who initially posted it to open source.

Finding a paper with accessible source code is highly complex for HDLs in cryptocurrency
price prediction. Therefore, the design for our models was partially taken from the study
about stock price prediction [15]. They were not using hybrid models; however, our hybrid
models follow the same structure regarding the number of dense layers and output and input
parameters. Moreover, the results of models are comparable, especially training and
validation loss graphs that show if the model is learning correctly. However, the accuracy of
models is hardly comparable as the cryptocurrency price is way more random than the stock
price [6], so it is harder to predict. Hence, the accuracy of our models is lower.

When the structure of the models is clear, the next step is to determine the input and output
parameters and windows. The input and output window represents the number of data points
to be fed into the model and produced as the prediction result.

The size of the input window is subject to change from study to study, and there is clearly no
uniform solution for all the problems. The exact answer needed to be revised in any
previously conducted study; there was no conclusion, so the decision was made to conduct an
experiment that would allow us to determine the best input window for HDL models in our
particular case. Hence, our data points and our models could be very different from the
existing ones, and they could suffer performance issues if all the subjects to change
parameters are not carefully picked. The experiment was conducted in the progress of models
implementation, and the results of it are present in the implementation section of the report.
Similarly to the input window, the size of the output window is justified in the
implementation part as well.

Normalisation is another important technique needed for the creation of an accurate deep
learning model. There are many normalisation methods that can be applied to our input data.
However, choosing good normalisation that is suitable for data could dramatically improve
the performance of HDL models. In our case, we are considering two models: LSTM-GRU
and GRU-LSTM, and each of these models can react individually to different normalisation
formulas. To ensure the best possible method found for our models, we decided to do another
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experiment that included two models and a number of normalisation techniques. It will allow
us to clearly see which formulas best satisfy the ETH price data points and needs of HDL
models.

When the model's format, input and output windows and normalisation methods were known,
it was time to go on to design the new set of models that would be able to take the daily
Volume of ETH trading into account. These models are going to need a different input
window as the input data consists of two different metrics. Additionally, the normalisation
could affect the new data set differently, so the experiment with different normalisation
formulas will be repeated in the setting of the new input parameter.

Later the performance results of both model sets will be compared, and the conclusion will be
made on the topic question of this research.

4.2 Transformer
The transformer model (TM) is a short name for the model implemented in this study
because, in reality, it is a decoder only transformer that combines a number of techniques
proposed in different studies throughout the past seven years.

The original transformer model (OTM) proposed in Attention Is All You Need [10] has an
encoder and decoder. The model is made to perform translation operations. In translation,
there is an input and output, and they communicate with each other to produce the most
accurate translation. In the translation task, there is no separation into future and past events.
However, in time-series forecasting, the input cannot talk to the output as the output has not
happened yet; it is in the future, while the input is in the past. For our purposes, it is vital to
ensure that future tokens cannot communicate with the past. Hence, our transformer uses only
a decoder.

TM generally uses a lot of techniques proposed in [10]. In more detail, all that methods will
be addressed in the implementation part of the report, especially in the Transformer chapter.
Below, here we are going to briefly list the components of the Transformer model.
Our transformer will include the following parts:

● Triangular mask - will be used to ensure that there is no communication between
future data and past data.

● Scaled Dot-Product Attention - this concept lies in the heart of any transformer
model; it is the most important and innovative part that allows tokens to communicate
with each other.

● Positional encoding - is essential for attention to work correctly; it makes sure that
data points know where they are in regard to future, past and present, or in simpler
words, where they are positioned in the input sequence.

● Multi-Head Attention - this principle speeds up the computation of the model by
splitting convolution into many groups.

● Feed-Forward Network - helps tokens to ‘think’ about their neighbours.
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● Residual blocks - are made to avoid the vanishing/exploding gradients problems.
● Layer Normalization - reduces training time and normalising the neurons.
● Dropout - was made in case the model would have an overfitting problem.

After the implementation of all the above parts of the TM, it is time to solve the last problem
of Transformer - input. Usually, transformers work with some form of the alphabet (letters or
subword blocks), and input is encoded as a string of values representing the position of the
symbol in the array or alphabet. In our case, the “alphabet” will be constructed out of unique
data points, and the input will be encoded in a similar way to the original manner.

When the TM is created and ready to be used, we will also study the effect of different input
windows and normalisation methods. It is going to ensure good results that are easily
comparable with hybrid models. After it, the last step will be to change the TM according to
the new input parameters, which will also include the Volume of day trading for ETH.

The next chapter will focus on the implementation details for all the models previously
described.
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5. Implementation
In this chapter, the implementation process will be discussed. It is split into two parts, one
discussing the creation of hybrid deep learning models and the other creation of a
transformer. For hybrid models, it will include the general information behind the
implementation process and information about input window experiments and experiment
with different kinds of normalisations applied to volume data later on.
The hybrid models part will be split into two subtopics:

● Implementation before volume - how the initial models were implemented, what
issues were addressed in the process, and how they were resolved.

● Implementation with volume - how the models were changed to add a new parameter
in the form of the day trading volume of ETH.

The transformer model section will include an explanation of methods utilised in
implementation and the theory behind those methods, on top of a general explanation of what
the transformer models are and what type of the model is implemented in this project. Similar
to the hybrid models section, this segment will include the part with general and
volume-related implementation.

Regarding the languages and libraries used in the implementation: Python and TensorFlow
were used for Hybrid Models, and the same library and language were used in inspiring work
[15]. The transformer part utilised Python and PyTorch because PyTorch allows customising
the network parameters and layers; this feature was essential to create the transformer.

5.1 Hybrid Models

5.1.1 Before Volume
The reasons why HDL or hybrid deep learning models were used are stated in the design
section of the report above. In this part, the focus is made on the implementation decision and
experiments that were previously described. The initial implementation of the model was not
a complex task that included following the structure present in [15] and adding a proper
second layer (GRU or LSTM). When models were created and tested, it was time to start the
experimentations needed to create accurate and trustworthy models.

The next value to consider in the implementation of models was the output and input
windows size. Output window could be any size from one day to as many as we want. One
day is the smallest output possible because our data is daily. The decision was made in favour
of a 7 days output window because it is one week of trading in the cryptocurrency market.
Similarly, in the study [15], we are replicating models from a five-day output window that
was used to represent one week on the stock market.
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Regarding the input window, the experiment was conducted with the implementation of
models with four different input sizes to see how the input window affects the models'
performance. The experiment included a one, two, three and four weeks window. The results
showed that more days in input for the HDL model produces less accurate results. The most
accurate model was achieved for LSTM-GRU and GRU-LSTM with one week input format
(see Table 5.1).

Table 5.1: Performance of LSTM-GRU and GRU-LSTM models. Best results in bold.

The final structure of both models can be seen in the figure below (see Figure 5.1). These
models will be the baseline of our study, and any further comparison will utilise their
performance metrics.
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Figure 5.1: Structure of HDL. Left: GRU-LSTM model. Right: LSTM-GRU model.

The next step is choosing the best normalisation technique for our task. The application of
normalisation methods to baseline models will allow us to see the performance difference.
The effectiveness of any DNN depends a lot on the normalisation method. As per suggestions
in [17, 18], we will apply more than one normalisation. For our experiment, the three most
common methods were taken from the studies evaluating data normalisation for DNN,
especially in time-series forecasting and stock index forecasting [17,18]. The three methods
are Z-score, Min-Max and Log scaling normalisations. Initially, the list was different, but the
experiment showed that only a few methods could cooperate with high Volume values in the
data set. For example, the very promising Tanh estimator and Decimal Scaling performed
exceptionally poorly, and performance evaluation values for both were on the level of RMSE
= 0.567 and MAPE = 760.6. For comparison, the Log scaling chosen by the experiment
showed: RMSE = 0.146 and MAPE = 1.46 (reminder: lower RMSE and MAPE values are
better). Overall, after several experiments, Z-score, Min-Max, and Log scaling showed the
best results and were chosen as our study's final set of methods.

Applying three kinds of normalisations to proposed models showed a significant performance
increase, as suggested in [17,18]. The table with the evaluation is presented below (see Table
5.2). It is clear from the table that Min-Max and Log scaling show the best possible results
and outperforms Z-score normalisation.
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Table 5.2: LSTM-GRU and GRU-LSTM performance metrics with 3 types of normalisation
and compared to best results obtained before normalisation applied. Best results in bold.

The next step was to apply the same normalisation methods to Volume and Closing price and
create a new set of hybrid models that uses a new combination of data.

5.1.2 With Volume
Now that the format of the models is known and the best input, output windows and
normalisation are justified, it is time to start rebuilding the models to include volume as input
paired with closing price. Based on the results from the experiment with the input window,
further changes will be made only to 1 week in 1 week out models because they proved to be
the best ones.

The volume will be added as a second dimension in the input layer of the models. Hence, the
format of the input window will be 7, 2 instead of 7, 1. In this case, we get the situation
where for each closing price value, there is one volume of trading value. Both values are
normalised separately and then sent to the input layer.

In order to see the effect of normalisation, both models are trained on 3 data sets each, where
each data set is the result of one of the normalisation techniques. For each case, the number
of essential parameters were optimised, such as learning rate, size of each layer and dropout
if needed. The performance results can be found below in table 5.3.
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Table 5.3: LSTM-GRU and GRU-LSTM performance metrics with Volume and 3 types of
normalisation.

The table shows that Log scaling outperformed Z-score and Min-Max normalisations. Overall
results will be discussed further in the Results section of the report.

5.2 Transformer Model

5.2.1 Before Volume
From the design section, it is clear that TM will be a lot different from the GPT-2 or OTM; it
will be missing some components because of the nature of time-series forecasting. However,
all the remaining components will be described in great detail with examples, pictures and
tables in this section of the report.

Because of the reasons above, our implementation can be represented in the picture below
(see Figure 5.2); it also includes the OTM and shows the difference in the design of both.
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Figure 5.2: OTM and TM graphical representation. Left: OTM Adapted from [10, Fig. 1].
Right: TM model.

In order to ensure the inability of information exchange between future tokens and past
tokens, the triangular mask is applied to input data. It makes the future tokens' values equal to
0 while the past have some value. The example below demonstrates the application of a
triangular mask on a list of three elements (see Figure 5.3).

Figure 5.3: Example of triangular mask applied to list of 3 elements.
Note: Values are examples only

The power of the Transformer model lies in the attention; it is the ability of tokens to look
back on each other and adjust values accordingly. In TM, we use "Scaled Dot-Product
Attention", which was used in OTM and proposed in the same paper [10]. The idea is that
each token has a query and key. Where the query is what values taken wants to see behind it,
and the key is what value the token assigns itself. Then, the dot product of the query with all

24



keys is computed and divided by the dimension of queries and keys . Next, softmax is𝑑
𝑞&𝑘

applied to obtain the weights on values.
The output matrix is computed as in [10, eq. (1)]:

(1)𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐵,  𝐶,  𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 𝐵𝐶

𝑑
𝑞&𝑘

)𝑉

Where B is a set of queries, C is a set of keys and V a set of values.

For attention to work correctly and for tokens to be able to look back on their neighbours,
they need to be aware of their position in the sequence. For these purposes, it is crucial to
apply positional encoding. It will allow tokens to understand where they are in sequence and
who is behind them [10]. It is possible by the addition of a token and position tables. Both are
generated using the PyTorch Embedding module, which allows to map index values to a
weight matrix and processes discrete input symbols or values in a continuous space. Initially,
tables are created with random values between -1 and 1, but during the training phase, the
values are updated via backpropagation to minimise the loss function.

When single attention and positional encoding are implemented, it is time to make
Multi-Head Attention (MHA) [10], another principle used in OTM. Instead of using one head
of attention at a time, in MHA h number of attention heads are performed and calculated in
parallel. Afterwards, they are concatenated to create a single vector. Instead of doing one
large convolution, MHA makes convolution in smaller groups, allowing better performance
[10].

To this point, our TM has the following parts implemented (see Fig. 5.4): Self Attention that
is converted to MHA and masked using our triangular mask.

Figure 5.4: Masked Multi-Head Attention

In the original paper, the subsequent implementation step uses the Position-wise
Feed-Forward Network [10]. Thanks to MHA and triangular mask, this mechanism allows
tokens that already know their neighbours from the past and themselves to analyse new
information and make conclusions about their surroundings. Feed-Forward Network in our
implementation has a form of one linear layer followed by a non-linearity, and it is called
after each call of Self Attention. It applied to each node separately and identically.

The position of the Feed-Forward block on our overall model diagram is shown below (see
Figure 5.5).
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Figure 5.5: Feed Forward block

The only parts that are now missing are a skip connection or Residual blocks and Layer
Normalization (see Figure 5.6). Residual blocks were initially introduced by He et al. [19]
and used in OTM implementation [10]. The Residual block's purpose is to help deep
networks that start to experience vanishing/exploding gradient problems. To overcome these
issues shortcut connections are introduced. They allow values to skip one or more layers in
the network, and later they are added to the output of the stacked layers [19]. Layer
Normalization is applied before adding the skip path to the main branch [10]. It can
substantially reduce the training time and make the network more efficient by normalising the
activities of the neurons [20]. It was originally proposed in [20] and implemented in PyTorch
[21]. We will use a pre-implemented version of Layer Normalization available in PyTorch.

Figure 5.6: Residual blocks in green and Layer Normalization in blue.

Overfitting problems arise when networks reach a high level of complexity [22]. Transformer
DNNs usually require a large number of parameters; for example, in the OTM paper, the

number of models were used starting from a size of params and way up to28 × 106
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params in the most significant model [10]. In order to fix this issue and ensure213 × 106

that our model can be safely scaled up for future research purposes, we have implemented a
Dropout. Dropout is a technique created to prevent overfitting in neural networks. It turns off
some percentage of randomly chosen units in the layer and prevents units from overly relying
on one another [22]. In our implementation, dropout can be applied at every stage of the
training process, so no hidden layer of TM will suffer from overfitting.

The last step in the TM implementation was to convert the data about the closing price of
ETH into a suitable format to feed it to TM. Originally transformers are made for the
prediction of the next sub-word block or letter in the output [10, 11]. It means that they learn
on the set of values where words are converted to sub-words, sub-words make a known
alphabet for the current problem and input encoded into a numeric string using positions in
the alphabet list. In our case, the ETH closing prices were converted into an “alphabet” that
holds unique values from the data set; in this case, unique values equal “sub-word” blocks.
Further, the input string with closing values is encoded using positional representation in the
alphabet list. It allowed us to convert values from closing prices into integer numbers limited
by the size of the alphabet list and feed them into TM. When the prediction is made, the result
is decoded and presented as the ETH closing price. Examples of encoding and decoding with
the example alphabet are presented in Figure 5.7.

Figure 5.7: Example of Decoding and Encoding

Now when all the building blocks of the final structure are implemented, we can see how
they all are represented in Figure 5.2 (on the right) and together construct the Transformer
Model suitable for cryptocurrency price prediction.

The input window experiment was conducted on TM. Similarly to HDL models, four types of
inputs were tested (See Table 5.4). Results from the table below help to conclude that input
window of one week is the best for proposed TM.
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Table 5.4: Performance of TM with different input windows. Best results in bold.

The last part of TM development now left is to see how previously tested normalisation
methods will affect the performance of the TM. In testing, the same normalisations as for
HDLs were used. The results are demonstrated in the table below (see Table 5.5). It is clear
from the normalisation experiment that TM benefits from normalisation; however, less than
HDL models. MAPE improvement presents only when Log scaling is applied.

Table 5.5: TM performance with 3 types of normalisation.

5.2.2 With Volume
Volume integration into TM is a complex task that in some way goes against the original idea
of transformers. Transformers were created to work with text data and sequentially predict
the next character or word. If the Volume is added to the input stream, it is mixed with the
closing price, making TM try to predict both. More complex data with many unique data
points leads to a vast “alphabet” combined with the prediction of a not consistent data output
stream will make TM highly inaccurate. TM is trained to predict the following number in
sequence, and the appearance of 2 types of numbers in input data will be confusing for the
model. In order to prove the theory explained above, we have implemented a one-week input
and one-week output transformer, where the input is a mixture of Closing price and Volume.
Volume and Closing price are normalised using Log scaling the same way it was performed
for HDL models. The result of the experiment showed the following: MSE = 134.58, MAE =
8.89, RMSE = 11.60 and MAPE 122.66. As was expected, the model's accuracy significantly
dropped compared to the one without Volume (see Table 4.5 Log scaling).

The overall results of all the models will be discussed in more detail in the next section of the
report.
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6. Results analysis
In this section of the report, the final result analysis will appear. It will discuss the main
findings from experiments conducted and the models created.

Regarding HDL models, the input window experiment clearly demonstrated that out of all
cases, the one week input window is the most beneficial to accuracy across the number of
metrics when paired with one week or seven days output for both GRU-LSTM and
LSTM-GRU.

Another important finding is that not all normalisation techniques work well with proposed
models. Tanh estimator and Decimal Scaling were promising but failed to be helpful in our
case. At the same time, Z-score, Min-Max and Log scaling were among the best tested
formulas and satisfied all requests. They were chosen to be the best, and all further models
used them and achieved good performance. However, among the three normalisation leaders,
there was Min-Max that was the best for both Transformers and HDL models.

HDL models demonstrated great cryptocurrency price prediction power. Especially when
input data is normalised using Min-Max or Log scaling, and the input window is seven days.
However, regarding the Volume as an additional parameter, the results show that it affects
HDL models in two ways (see Table 6.1). From the table below, it is clear that Volume, when
applied to HDL models with Log scaling, improves the performance of LSTM-GRU and
GRU-LSTM. However, when Volume is applied with Min-Max normalisation, the original
model still outperforms the model with an additional parameter.

Table 6.1: HDL Best Results With and Without Volume. Best results in bold.

Results for TM suggest some similar to HDL models conclusions. The input window
experiment clearly shows that one week input is the best for Transformer; for more
information, see Table 5.4. One week's input outperformed competitors by all metrics: MSE,
MAE, RMSE and MAPE.
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The normalisation experiment was conducted for TM in the same way as for all other models,
and it did show that Min-Max normalisation and Log scaling both did great in increasing the
performance results. However, there is no clear winner because many best metrics values are
split between all three normalisations; for example, MSE is best in the case of Min-Max, but
Log scaling outperformed every other one by MAPE. For the whole picture of the
normalisation experiment, see Table 5.5, but generally speaking, Log scaling can be
considered one of the best.

For the TM with Volume, there is a deviation from previously conducted data. The overall
performance of TM suffered a significant decline across all evaluation metrics when the
Volume parameters were added to the input. Even with one of the best normalisations, it still
did perform extremely poorly (see Section 5.2.2 of the report).

TM demonstrated prediction power comparable to some of the implementations of HDL. In
the table below, the best result before Volume is presented with the Volume result to clearly
show the drop in prediction power (see Table 6.2). It is clear that the addition of Volume only
harms the model's performance, and it is not to be considered a good additional parameter.

Table 6.2: TM Best Results With and Without Volume. Best results in bold.
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7. Conclusion
This last and final chapter of the report presents the overall conclusion for the HDL and TM
models, a review of the initial aims set out at the beginning of this report, parts of the project
that have been changed in comparison to the proposal, possible future work in the field of
study and personal reflection on the project as a whole.

The overall conclusion is that Hybrid Deep learning and Transformer models were created
and properly trained, and all valuable parameters were derived from the experiments or
literature review. Volume as an additional parameter was concluded to be harmful for TM
performance and positively affected HDL models. However, some interesting information
was gathered in the progress of the study and will be further discussed in the future work part
of this chapter.

7.1 Review of Aims

7.1.1 Hybrid Models
Aims: “Create LSTM-GRU and GRU-LSTM hybrid models, train using ETH as the coin of
choice and measure performance – to get the baseline data for the study.” & “Discover the
optimal input window size and normalisation method for the Hybrid models.”

These first project aims have been successfully met. The hybrid models were created and
trained in many formats: for input window experiment, for normalisation experiment. It
allowed for determining the best input window, normalisation method and other additional
parameters of HDL models. The best input window for this type of models was concluded to
be a one-week input window, and the best normalisation to be Min-Max or Log scaling. The
performance of the models at all stages of implementation is presented in the report in the
implementation and results analysis sections.

7.1.2 Transformer Model
Aims: ”Create a Transformer model suitable for time series prediction, train using ETH as
the coin of choice, and measure the performance – to get the baseline data for the study.” &
“Discover the optimal input window size and normalisation method for the Transformer
model.”

For the Transformer model, all the implementation steps are discussed in the implementation
chapter. All the initial goals regarding the transformer were met within the project. The
designed model is suitable for ETH closing price forecasting. The performance was measured
and compared to determine the best input window and best normalisation. The best input
window was concluded to be one week input, and Log scaling or Min-Max to be the best
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normalisations for the model. However, the accuracy of the model was concluded to be lower
than in case of Hybrid models.

7.1.3 Volume Addition
Aim: ”Apply Volume as an additional parameter for presented models, experiment with
different normalisation formulas, and measure models' performance after the input
parameter changes.”

Both models were changed according to additional input parameters in the form of the
Volume of day trading for ETH. Different normalisations were applied to Volume in order to
see if there was any significant performance difference. Log scaling normalisation appeared
to be the best for HDL and the same is true for TM. Overall the conclusion was made that
Volume as an additional parameter decreases the prediction power of TM and does affect
HDL models slightly in a positive way. Overall, Volume is not recommended to be included
in model training as an additional parameter.

7.1.4 Conclusion
Aim: “Make a conclusion based on collected data and present a verdict on the effect of
volume as an additional parameter on hybrid deep learning models and Transformer.”

At the end of the project, after all the experiments and comparisons, as was planned, the
conclusion about the proposed idea was made. Hybrid models demonstrated great prediction
power and accuracy. TM showed lower results but a clear potential for future improvement.
Regarding the addition of the Volume of day trading of ETH, the conclusion was made that it
is harmful to TM; however, it can be considered to improve the performance of HDL models
slightly.

7.2 Changes in Comparison to Proposed Project
One of the main differences between this paper and the originally proposed project is that
initially, it was expected to find three deep learning models previously implemented in
studies for cryptocurrency price prediction and, later on in this study, to change these models
to accept additional parameters of volume. However, in the progress of work, it appeared that
no studies in the field shared the source code for the papers, or at least we were not able to
obtain any models suitable for the study. Later the decision was made to implement the
models within our study and make the changes to our models and compare the results before
changes and after.

7.3 Future Work
In the progress of the research and experiment for this study, to the best of our knowledge, we
utilised the Transformer model for time-series forecasting of cryptocurrency price for the first
time. TM model demonstrated prediction power comparable to HDL, currently
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state-of-the-art models in time-series forecasting. It is the indicator that TMs have the
potential to compete with HDL because in our study TM was smaller in size (345k
parameters for TM to 405k for HDL), and still, it performed well for the relatively small size.
Usually, TMs are much more significant; the number of parameters in GPT-3 was 175B [11].
It shows potential for improvement of TM by making it bigger.

Additionally, as suggested in [11], TM performs great when trained on a big data set and later
fine-tuned to a specific task. Hence, one of the future research opportunities is to train a
bigger Transformer on a data set consisting of, for example, the 100 most valuable
cryptocurrencies and then fine-tune it for ETH closing price prediction. Such an approach
will result in dramatic performance improvement.

7.4 Personal Reflections
As a whole, the project resulted in excellent skills developed in the fields of AI, Data Mining,
Data Science and many more. Even before, the scope of my interests focused on
cryptocurrencies, NFTs, technologies surrounding these areas and communities of people that
develop new and innovative businesses. The developed project could especially help
investors and crypto-communities if applied in a proper way and wrapped into easy to use
service. In the progress of the project development, my personal skill set gained familiarity
with the Google Colab platform, Python, TensorFlow, PyTorch and web scraping techniques.
All these components could be beneficial in a number of fields of computer science, such as
AI studies or Data Science.

Previously undertaken degree modules on Artificial Intelligence, Machine Learning, and
Databases provided a solid basis for the work undertaken within this project. It presented an
opportunity to improve my skills and apply the concepts taught and solidify my
understanding. I now feel more confident in the areas of AI, ML and Data Science. Also, the
skills gained will be helpful in future studies and career opportunities.
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Appendices

Appendix 1
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Appendix 2

Figure A2.1: Example of prediction graph from the study (GRU-LSTM)

Figure A2.2: Example of prediction with Log scaling normalisation (LSTM-GRU)
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